LIFE Maronesa

LIFE Climate Governance and Information

Extensive Livestock - a sustainable model that contributes to the mitigation of climate change

MARONESA

LIFE

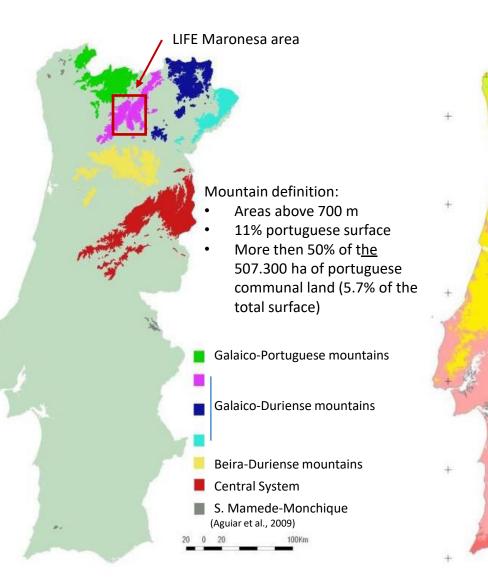
Partners:

casal da BOUÇA

LIFE19 GIC/PT/001285

LIFE Climate Governance and Information

Mountains of northern Portugal



LIFE Climate Governance and Information

CASAL D

LIFE Maronesa

Main portuguese mountain massifs

Termotipos

Thermomediterranean inferior Thermomediterranean superior Mesomediterranean superior Supramediterranean Thermotemperate superior Mesotemperate inferior Supratemperate superior Supratemperate inferior Supratemperate superior Orotemperate inferior (Mesquita, 2006)

- Geomorphology
 - "The Portuguese relief is broken down into more or less extensive plateau fragments, more or less elevated, more or less cut by valleys. Almost all topographic features are scarps that separate plateaus of different altitudes." (BIROT, 1950)
 - See figure
- Bioclimatology
 - See figure

Lithology and soil fertility


LIFE Maronesa LIFE Climate Governance and Information

	%		рН	mg	kg-1	Cmol(+) kg ⁻¹								
Parameter	М.О	H ₂ O	КСІ	P ₂ O ₅	K ₂ O	Ca ++	Mg ++	K+	Na ⁺	AT NaOH	Cation exchange capacity	в		
Hay meadows (n=27)														
Mean	5,22	5,47	4,39	<mark>11,03</mark>	84,26	1,37	0,48	0,18	0,24	1,84	4,11	<mark>0,44</mark>		
SD	1,21	0,12	0,05	1,77	17,28	0,31	0,08	0,04	0,09	0,49	0,74	0,27		
	Very					<mark>Very</mark>					Very			
Qualification	high	<mark>Acid</mark>		<mark>Very low</mark>	Medium	low	<mark>Very low</mark>	Low	Low		low	Medium		
Rangelands (n=24)														
Mean	7,96	4,66	3,96	15,92	83,68	0,64	0,39	0,22	0,43	3,77	5,45	0,81		
SD	4,76	0,16	0,13	5,88	33,75	0,22	0,11	0,11	0,22	1,29	1,65	0,25		
	Very					<mark>Very</mark>								
Qualification	high	<mark>Acid</mark>		Very low	Medium	low	<mark>Very low</mark>	Low	Low		Low	Medium		
T test														
Significancy	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	n.s.	<0,01	<0,01		

- Lithology
 - Acid rocks: granits or schists
- Soils
 - Leptosoils or regosoils
 - Low chemical fertility (vd. table)

Grazing lands and local breeds

'Maronesa' cattle grazing in hay meadows (private land)

'Maronesa' cattle grazing in well managed rangelands (common land)

'Bravia' goat browsing in heavily burned rangelands (common land)

LIFE Maronesa

Grazing lands

Productivity and stocking rate (Souto and Outeiro common rangelands)

grazing days and sto	ocking rate (Casal	da Bouça farm)
		Rangeland
n⁰	AU	grazing days
117	0,8	195
23	0,6	209
5	1	184
410,2		
	Conversion in cows/ha	0.12
	nº 117 23 5	117 0,8 23 0,6 5 1 410,2 Conversion in

Maronesa cow								
	Ingestion of							
Mean adult	rangeland	Ingestion of hay		Shrubs in the				
female weight	forrage DM	meadow forrage DM	Rangeland grazing	rangeland grazing	Hay meadow	Hay ingestion	Shrub water	Hay water
(LW) (kg)	(% LW)	(% LW)	(days)	diet (%)	grazing (days)	(days)	content (%)	content (%
425	2,20%	2,50%	195,00	40%	45	125,00	40%	15%
			Annual ingestion		Annual ingestion		Annual grass DM	Annual ingest
		Daily ingestion of	of shrub DM	Annual ingestion of	of grass DM	Annual	ingestion (hay +	of shrubs GI
Annual DM	Mean DM diary	shrubs DM during	during rangeland	grass DM during	during hay	ingestion of hay	hay meadow and	during rangela
ingestion (kg	ingestion (kg	grazing	grazing	rangeland grazing	meadow grazing	DM	rangeland grass)	grazing
DM/cow.yr)	DM/cow.day)	(kg DM/cow.day)	(kg DM/cow.yr)	(kg DM/cow.yr)	(kg DM/cow.yr)	(kg DM/cow.yr)	(kg DM/cow.yr)	(kg GM/cow.
3629,5	9,9	3,7	729,3	1094,0	478,1	1328,1	2900,2	1215,5

ravia goat					
Mean adult	Mean adult female				
female weight	metabolic weight	Ingestion	Daily DM ingestion		
(LW) (kg)	(MW) (LW^0.75)	(g DM/kg LW^0.75)	(kg/day.goat)		
35	14,4	54	0,78		
Rangeland					
grazing period	Shrubs in the	Shrub water content	Hay water content		
(months)	rangeland diet (%)	(%)	(%)		
11,5	60%	40%	15%		
	Annual ingestion of	Annual ingestion of		Annual ingestion of	
Annual DM	shrub DM during	grass DM during	Annual ingestion of	grass DM (hay +	
ingestion	rangeland browsing	rangeland browsing	hay DM	rangeland grass)	Goat
kg DM/goat.yr)	(kg DM/goat.yr)	(kg DM/goat.yr)	(kg DM/goat.yr)	(kg DM/goat.yr)	(12,8 goats=1cow)
283,6	163,1	108,7	11,8	120,5	Cow

Landscape of temperate mountains in the recent past Rangelands

Serra do Marão, beginnings of the XX century

Supratemperate grassland of *A. capillaris* sustained by pastoral fire and cattle and goat grazing

Mesomediterranean grassland of *Poa bulbosa* sustained by pastoral fire and goat grazing

Landscape of temperate mountains in the recent past Hay meadows

Hay meadows of Holcus lanatus with a potencial DM production above 10 t DM/ha

↓ Agriculture
 abandonment
 ↑ Pinus
 plantations

- ↓ Cultivated area
 ↓ Grazing
 disturbance
- \uparrow Wildfire intensity
- \downarrow Nutrient cycling
- ↓ Managment
 knowledge and
 intensity of grazing
 lands

Rangelands

- ↓ Phytocoenosis diversity
- ↑ Shrub encroachment
- ↑ Annual/bienal grasslands
- \downarrow Perennial grasslands
- \downarrow Soil cover
- \downarrow Soil organic carbon (SOC) stock
- \downarrow Forage productivity
- \downarrow Stocking rate

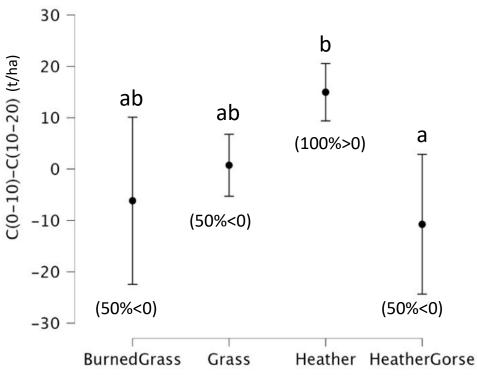
Hay meadows

- \downarrow Area
- \downarrow Soil fertility
- \downarrow Phytocoenosis diversity (landscape scale)
- \downarrow Species diversity
- \downarrow Productivity
- \downarrow Stocking rate

Rangelands

10b

Main species: Erica australis, E. arborea, E. umbelata, E. cinerea, Halimium alyssoides, Pterospartum tridentatum subsp. cantabricum, Ulex minor, Pseudarrhenatherum longifolium



LIFE MARONESA

Rangelands

Shrub encroachment, wildfires and SOC

SOC (0-10 cm) – SOC (10-20 cm) (t C/ha) in four rangeland vegetation types (n=6 rep x 4 veg types) (ANOVA, Tukey test)

Soil collapse caused by the mineralization of soil organic matter following de wildfire of 2016

MARONESA

Rangelands

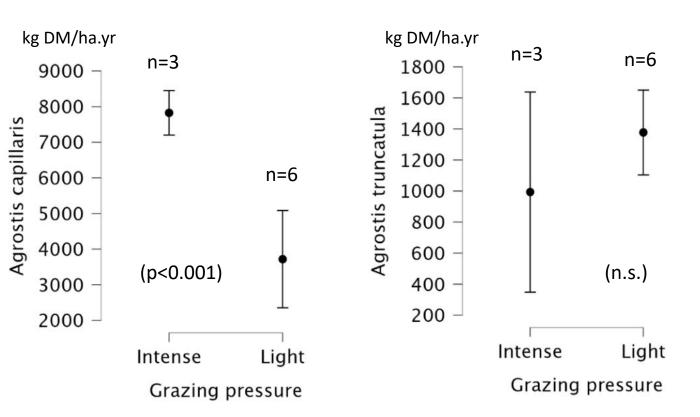
Competitive exclusion of grasses and forbs Wildfires and flora turnover

Shrub encroachment and the competitive exclusion of grasses and forbs (noticeable with shrubs above 50-60 cm)

Summer high intensity wildfires

Agrostis capillaris

Agrostis truncatula subsp. durieui



LIFE MARONESA

Rangelands Flora turnover and productivity

LIFE Maronesa rangeland monitoring plot in a wildfire damaged area

Productivity of grass **pure stands** with 8 yrs. of cattle grazing following the 2016 wildfire (ANOVA)

Hay meadows

BOUCA

Main species: Holcus Ianatus, Cynosurus cristatus, Arrhenatherum bulbosum, Agrostis capillaris, Trifolium dubium, T. pratense, T. repens, Hypochaeris radicata

Hay meadows

Abandonment

Land use transition matrix (1958-2017) (Montesinho mountain, northeastern Portugal)

				-				_	_			20	17			_							
Land use type	111	112	121	131	133	211	212	221	222	232	242	243	244	311	312	313	321	322	324	332	333	512	Total area (ha) (1958)
112	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
121 131	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
131	0.0	0.0	0.0	18.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.7
133	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0
211	0.5	1.9	1.4	0.0	0.0	44.9	0.0	0.0	41.2	11.3	14.9	3.6	4.1	43.2	43.7	9.8	18.5	523.8	55.6	0.0	0.0	0.0	818.2
212	0.7	0.3	0.0	0.0	0.0	3.3	0.0	0.0	0.0	0.8	10.9	0.0	0.0	1.7	0.0	0.0	0.4	1.0	0.0	0.0	0.0	0.0	19.2
221	0.4	1.5	0.0	0.0	0.0	0.2	0.0	0.9	0.0	0.0	4.8	0.5	0.0	2.3	1.4	0.0	0.0	7.7	0.0	0.0	0.0	0.0	19.6
222	1.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.9	0.1	1.4	0.0	0.0	10.1	0.2	2.3	0.0	2.3	0.1	0.0	0.0	0.0	18.8
232	1.1	0.0	0.0	0.0	0.0	6.2	0.0	0.0	1.5	91.5	4.0	1.6	12.8	27.4	4.3	3.7	40.8	65.1	2.8	0.0	6.2	0.9	269.7
242	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
243	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
244	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.4	16.4	0.0	0.0	7.3	47.5	0.5	1.0	0.2	2.0	2.9	0.0	1.3	1.1	80.8
311	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	6.9	0.4	0.4	5.7	69.0	22.1	10.2	1.4	27.9	0.6	0.0	0.6	0.0	145.3
312	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.5	0.1	0.0	0.0	0.0	2.4	33.5	1.6	0.0	4.4	0.4	0.0	0.0	0.0	43.7
313	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8	1.3	2.6	0.0	0.5	0.0	0.0	0.0	0.0	6.2
321	0.0	0.0	0.0	0.0	0.6	1.4	0.0	0.0	0.3	1.6	0.0	0.0	0.6	0.5	2.1	0.0	20.7	52.6	12.4	0.0	24.9	0.1	117.9
322	0.9	0.6	0.1	0.0	4.9	16.4	0.0	0.3	16.8	8.5	6.6	0.0	4.4	74.1	222.2	18.5	37.3	1477.0	313.0	0.0	224.9	25.3	2451.8
324	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.1	1.2	0.8	0.0	0.0	33.6	241.9	3.4	0.0	150.0	48.9	0.0	1.5	0.0	481.8
332	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	759.1	0.0	0.0	759.1
333	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
512	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total area (ha) (2017)	22.9	4.3	1.5	18.7	5.5	74.1	0.0	1.2	61.7	138.4	43.8	6.1	34.9	313.5	573.2	53.1	119.2	2314.3	436.6	759.1	259.4	27.4	5269.1

(Castro & Aguiar, 2019)

C lob

232 hay-meadows: 269.7 ha (1958)-> 138.4 ha (2017) [- 48,7%] 211 cereals: 818.2 ha (1958) -> 74.1 ha (2017) [-90,9%]; 523.8 ha converted to shrublands (322) 312 *Pinus pinaster* plantations: 43.7ha (1958) -> 573.2 ha (1958) [+ 1211%]

MARONESA

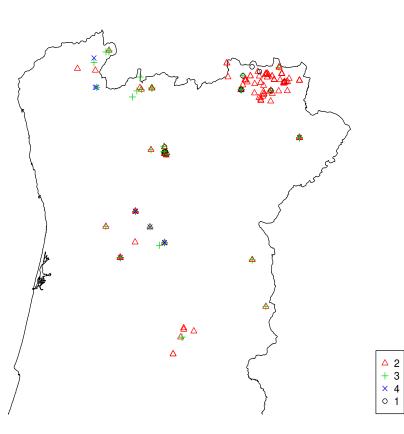
Hay meadows

Evaluation of the floristic quality (Aguiar & Monteiro-Henriques 2019)

Criteria

- Level 4: Presence of indicators of good state of conservation : ≥ 6
- Level 3: Presence of indicators of good state of conservation : 3 5
- Level 2: Presence of indicators of good state of conservation : 0 2
- Level 1: Presence of indicators of good state of conservation : depends on the number of sanctions

• Sanctions


- The degree of conservation goes down to 1 level until reaching level 1 if the cumulative coverage (%):
 - Annual nitrophilous plants > 33%
 - Perennial nitrophilous plants > 33%
 - Annual and biannual oligotrophic plants > 33%
 - Clonal plants > 15%
 - Trees and bushes > 10%

Hay meadows

Evaluation of the floristic quality (Aguiar & Monteiro-Henriques 2019)

Diachronic evolution of the degree of conservation

Levels	Historical relévès (< 2000)	Actual rélèves (≥ 2000)
4	7.8%	2.4%
3	41.7%	17.5%
2	47.0%	69.0%
1	3.5%	11.1%

Hay meadows

Causes of floristic impoverishment and reduced productivity

Trends

- > soil acidity
- < nutriente bioavailability (e.g. calcium, boron, phosphorous)
- < legumes
- < dicots with large flowers or inflorescences
- > clonal species; e.g., Mentha suaveolens, Brachypodium rupestre
- > acidophilous species; e.g., Festuca rothmaleri, Danthonia decumbens, Nardus stricta
- > low palability species; e.g. anual *Geranium*
- Structural simplification colapse of the *Holcus lanatus* layer
- < crude protein and digestibility
- < productivity</pre>

LIFE Maronesa hay meadow experimental plots Treatments: Ca 0, 1; N 0, 1, 2; herbivory 0, 1, 2

Hay meadows Causes of floristic impoverishment and reduced productivity

Causes

- > nutrient export
 - > hay consumed ouside the system
 - < nutrient return by manure or chemical fertilization
- < autumn and late winter grazing
- < hedge management
- < cattle dung spread
- < traditional irrigation systems
- < manual control of clonal plants
- < reseeding</pre>
 - Earlier hay making dates
 - > hay making and transport eficiency

Mr. Augustinho Alves, one of our best hay meadows informants, with a three-slot yoke still used for taming cows

"When the goats disappeared, the hay meadows [production] ended", says the shepherdess Clementina Vale

LIFE Maronesa LIFE Climate Governance and Information

LIFE Maronesa FE Climate Governance and Information

LIFE Maronesa

Geographic area of intervention

The geographical area of intervention of the LIFE Maronesa project covers the following municipalities:

- Vila Pouca de Aguiar
- Ribeira de Pena
- Mondim de Basto
- Vila Real
- Vila Pouca de Aguiar demonstration area

Remaining municipalities - replication areas of the extensive production model and by the following producers.

MARONESA

Hay meadows Goals and procedures

Short term goals

- > area
 - < Cytisus sp.pl. cover (landscape scale)
- < fire risk
- > specific diversity
- > habitat heterogeneity
- > Holcus lanatus cover
- > legume cover and nitrogen fixation
- > productivity and hay quality (protein)
- > farmer's work efficiency

Procedures

- > restoration of hay meadows from thickets of Cytisus sp.pl
- > grazing pressure before the closure of the hay meadows
- Hay making after the beginning of *Holcus lanatus* spikelets disarticulation
- > seed dispersal through hay spread inside the hay meadows for direct cattle feed during winter
- > cattle using rural ground roads
- > water from rural ground roads directed towards hay meadows
- Aplication of a low dose of magnesium limestone (500 kg/ha)
- Aplication of 30-40 kg P_2O_5 /ha

Hay meadows Goals and procedures

Programing the application of magnesium limestone

Hay meadows restauration using tractor shredder followed by (i) hay distribution for consumption *in situ* and (ii) vegetation cover stabilization with grazing

MARONESA

Rangelands Goals and procedures

Short term goals

- < fire return interval
- < fire intensity
- > vegetation heterogeneity
- < Agrostis trucatula cover
- > perennial grasses cover (e.g. Pseudarrhenatherum, Avenula, A. capillaris)
- < Cystisus sp.pl. cover
- > forage productivity and quality
- > soil carbon sequestration
- > soil fertility
- > farmer's work efficiency

Procedures

- > grazing pressure
 - > rangeland grazing period (+ 15 days 1 month)
 - > cattle overnight stay in the rangeland
- Hay spread in the rangeland for direct cattle feed
- > prescribed fire (preferably when shrubs > 60 cm)
- > fencing
- > canadian fences
- > manger distribution through the rangeland
- > GPS collars
- > Temple Grandin handling cattle systems
- Rotational mixed grazing (nearby future)

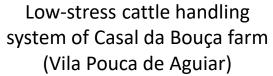
Rangelands Goals and procedures: increased grazing pressure

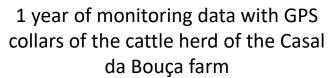
Herbivory exclusion fences: mesic (above) and wet soils (below)

Undergrazed vegetation with increasing fire risk

Seed dispersal by cattle dung

Carduus asturicus, an endemic thistle of NW Iberia dependent of cattle dung depositions

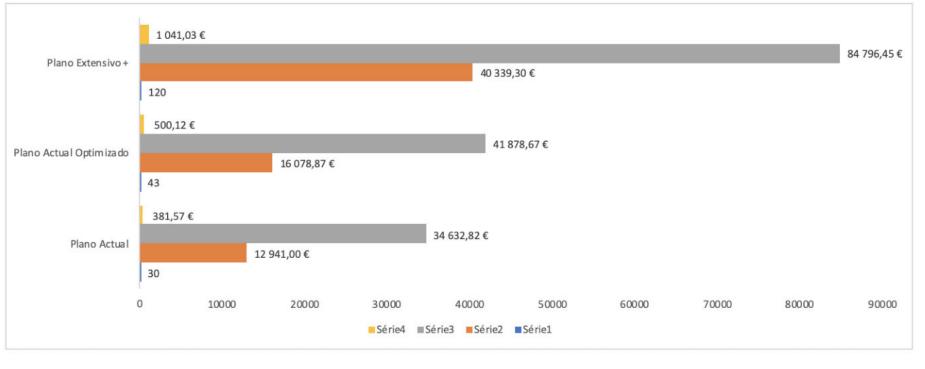

Rangelands


Goals and procedures: improved cattle management

Manger effect in the surrounding vegetation

Rangelands Goals and procedures: prescribed fire

Prescribed fire training for shepherds developed with the cooperation of the LIFE Maronesa Project. Instead of heathers (*Erica australis* and *E. arborea*) and gorse (*Ulex minor*), brooms (*Cytisus* sp.pl.) are avoided by cattle. The brooms also have the disadvantage of practically only burning in the summer, increasing the risk of high intensity fires that damage de soil. Agrostis capillaris Prescribed fire preserves the rhizomes of this species Recover of Arrhenatherum bulbosum after a winter prescribed fire in a Cytisus ticket



Income from cattle rearing in temperate mountains

Conversion of the Avelino Rego exploration to the extensive system:

- 7 months of mountain grazing
- 29% increase in hay meadow productivity
- Ca. 55% of EU aids

Obrigado pela atenção (Thank you for your attention)

LIFE Maronesa

LIFE Climate Governance and Information

Project LIFE19 GIC/PT/001285

The extensive cattle production is a important tool in forest conservation in fire prone landscapes

Main species: Quercus pyrenaica, Genista falcata, Pteridium aquilinum, Poa nemoralis, Holcus mollis